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Table 4 (cont.) 
Angles 
Standard deviations are 0"5 o in each case. 

P(1)(1)-Cd-P(1)(2) 126.3 ° 
P(1)(1)-Cd-P(2)(1) 95.6 
P(1)(1)-Cd-P(2)(2) 105"4 
P(1)(2)-Cd-P(2)(1) 115"9 
P(1)(2)-Cd-P(2)(2) 110.5 
P(E)(1)-Cd-P(2)(2) 99.2 

Short P-P bonds 
Bond lengths 
Standard deviations are 0.018 A in each case. 

P(1)(1)-P(2)(1) 2.386 A 
P(1)(1)-P(2)(2) 2.050 

Angles 
Standard deviations are 0-7 ° in each case. 

P(2)(1)-P(1)(1)-P(2)(2) 108.0 o 
P(1)(1)-P(2)(2)-P(1)(3) 105.7 
For location of atoms see Fig. 2. 

really a projection of the structure along [010], P atoms 
at the same position in the projection, but a distance 
b apart, are slightly displaced from each other to give 
the diagram a three-dimensional effect. The atoms in 

each chain are joined by broken lines and the diagram 
shows three rows of chains, the chains in each row 
being one above the other perpendicular to the plane 
of the projection. Such rows are joined together by one 
quarter of the tetrahedral bonds from Cd to P(1) in 
each case. The chains in each row are joined by the 
remaining tetrahedral bonds, two to P(2) atoms and 
one to a P(1) atom from each Cd. 

We wish to thank Dr P.J.Wheatley, of Monsanto 
Research S.A., for providing computer programs which 
have been used in this work. 

References 
BERAK, J. & PRUCHNIK, Z. (1968). Roczni. Chem. 42, 1403. 
BOND, W. L. (1959). Acta Cryst. 12, 375. 
DALY J. J., STEPHENS, F. S.  & WHEATLEY, P. J. (1963). 

Monsanto Research S. A., Final Report No. 52. 
International Tables for X-ray Crystallography (1962). Vol. 

III. Birmingham: Kynoch Press. 
PHILLIPS, D. C. (1954). Acta Cryst. 15, 512. 
STACKELBERG, M. VON t% PAULUS, R. (1935). Z. Phys. 

Chem. B28, 427. 

Acta Cryst. (1969). B25, 2374 

On the Additivity of Crystal Radii in Alkali Halides 

BY P. A. SYsI0 

Department of  Physics, University of  Helsinki, Finland 
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The additivity of crystal radii in alkali halides has been studied by applying the method of least squares 
to the experimental nearest-neighbour distances, dab. The result is a basic set of crystal radii, ra and rh 
(rr~i=l'038, r~ra=l'295, r~=1"617, r~b=l'759, re =2"017, rF=l'019, rm=1"534, r~3r=l'695, r~= 
1"934 A), and an additive correction c (r, + c, rh-c). Theoretically the constant c has the value zero. 
The best agreement of the least-square radii with the experimental radii was achieved with the value 
c~p= (-0.114+ 0.014)/~. The cation radii decreased and anion radii increased in comparison with the 
basic values (c = 0) resulting from the ionic character of alkali halides. The root-mean-square deviation 
of the radii sum, r,-t- rh, from the experimental d,h values is 0.021/~, and the r.m.s, deviation of the values 
r~+ c~p, rn-  ce~p from the experimental radii, 0.058/~. 

Crystal radius 

Disregarding the small non-sphericity of atoms in a 
crystal lattice and taking into account the low compres- 
sibility of crystalline solids, a crystal can be approxim- 
ated to a solid composed of hard atomic spheres. Strict- 
ly, of course, those spheres are neither hard nor spheri- 
cal, as can be seen quite clearly from electron density 
maps (see e.g. Witte & WNfel, 1955). Therefore, the 
radius of an atom in a crystal - crystal radius - does 
not have any accurate meaning and can have various 
definitions. 

The classical way to determine the crystal radii in a 
family of salts, as in the alkali halides, is to fix the 

radius ratios of the alkali and halogen ions in one 
crystal by use of a suitable physical criterion. Well 
known examples are the radii evaluated by Wasa- 
stjerna (1923), Goldschmidt (1926), Pauling (1927) and 
Zachariasen (1931). 

Fumi & Tosi (1964) have reported a set of crystal 
radii based on the Pauling and Huggins-Mayer forms 
(Fumi & Tosi, 1964), and on the Born-Mayer form 
(Tosi & Fumi, 1964) of the repulsive energy (see also 
Tosi, 1964). The procedure is cumbersome, but yields 
values in fairly good agreement with the experimental 
ones derived from the X-ray measurements of electron 
distributions in crystals CInkinen & J~trvinen, 1968; 
J/irvinen & Inkinen, 1967; Krug, Witte & W61fel, 
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1955; Kurki-Suonio & Fontell, 1964; Meisalo & 
Inkinen, 1967; Merisalo & Inkinen, 1966; Schoknecht, 
1957; Witte & WSlfel, 1955; see Table 2). 

A report concerning ionic radii in alkali halides has 
also been given by Maslen (1967). He compares Paul- 
ing radii and Fumi & Tosi values, and also gives radii 
in nine crystals, based on the criterion of minimum 
electron density or minimum overlap in the theoretical 
crystaMattice superposition. 

A very different set of radii - atomic radii - has been 
introduced, and tested in over 1200 cases of internu- 
clear distances with an average deviation of about 
0.12/~, by Slater (1964). By use of Bragg's simple 
principle of touching atomic spheres (Bragg, 1920) 
Slater starts numerically from elements forming com- 
pounds with tetrahedral coordination. He reports ato- 
mic radii of 86 elements; most values are clearly cor- 
related with, and in many cases practically equal to, 
the radii of the theoretical radial charge density maxi- 
ma of the outermost electron shells (Slater, 1965, 
p. 103). 

Most discussions concerning crystal radii, in alkali 
halides especially, are based on the obvious additivity 
of those radii. The usual statement is that one only 
needs to fix one radius or the radii ratio in one crystal 
in order to get the whole set. Further, with complicated 
refinements of the theory the radii become individual- 
crystal-dependent (Tosi, 1964; Maslen, 1967). How- 
ever, as Slater states, 'with all this elaboration, the sim- 
ple fact has rather been lost in sight, that by the straight- 
forward use of a single set of radii, one can do fairly 
well' (Slater, 1965, p. 97). Such a single set of radii, as 
precisely additive as possible, can be achieved trivially 
by applying the well-known method of least squares to 
the experimental nearest-neighbour distances. 

T h e  m e t h o d  o f  l e a s t  s q u a r e s  

Additivity of crystal radii means qualitatively that vari- 
ous interionic distances can be reproduced with satis- 
factory precision on the basis of a single set of radii. 
Quantitatively this precision can be expressed in terms 
of the root-mean-square deviation. In the alkali halide 
family, the best fit to the experimental nearest-neigh- 
bour distances, dan, (Hietala, 1963; Nat.  Bur. Stand. 
Circ. 1953-57; Pautamo, 1963) is achieved with the 
alkali and halide radii, ra and rn, which satisfy the 
condition 

S =  Z, an(ra + r n -  dan)2=- m i n i m u m  ; (1) 

the summation is from 1 to na = 5 for alkali ions and 
from 1 to n n = 4  for halide ions. 

We begin with the values 

r~l)=(1/2nn)Gndan and r~D=(1/2na)lgadan (2) 

and continue the series as follows: 

r(,) r(an-,_(1/nn)En(r~,-1) + r(h,-1)_dah) a ~ "  

r(a'°=r(a"-')-(1/na)Za(r(a"-') + r(h"-')-- dan) . (3) 

The sequence (2)-+(3)-+(3) yields "a'¢")=r~ '~-1) and 
r},'°=r(d '-1) with n = 3 ,  i.e. the series have terminated 
in constant values, 

ra = r~ ) = (1/nn)Z, ndan - (1/2nann)Z, andan , 

rn = r(h 2) = (1/na)Zadah -- (1/2nanh)Z, andan , (4) 

depending only upon the primary dan values. 
In order to see if the radii in equations (4) satisfy the 

least-squares condition (1), we add arbitrary constants, 
ca and cA, to ra and rn respectively, and insert these 

Table 1. The basic (equal to the theoretical) least-square radii, ra and rn, experimental  nearest-neighbour 
distances, dan, and deviations dan = ra + rn - dan and Aan/dan 

Li 1.038 

Na 1-295 

K 1"617 

Rb 1-759 

Cs 2.017 

r.m.s, deviation 
1% I deviation 

F C1 Br I 
1-019 1.534 1-695 1.934 

2.014 2.570 2.751 3.000 
0.043 0-002 - 0"018 - 0.028 
2-14% 0.08% - 0.65% - 0.93% 

2.317 2.820 2.989 3-237 
- 0.003 0.009 0-001 - 0.008 
-0-13% 0-32% 0.03% -0"25% 

2-673 3"147 3.298 3"533 
- 0"037 0-004 0"014 0.018 
- 1.38% 0-13% 0.42% 0.51% 

2-815 3"290 3"444 3-671 
- 0"037 0"003 0"010 0.022 
- 1-31% 0"09% 0.29% 0"60% 

3"004 3"571 3.720 3.956 
0-032 - 0.020 - 0.008 - 0"005 
1"07% - 0"56% - 0"22% - 0"13% 

0"021 
0"56% 
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'cor rec ted '  values in to  t h e  square sum (1). W i t h  the aid 
o f  the  expressions (4) we get 

S '  -= ~2ah(ra q- rh -- dab) 2 -1- ~2ah(Ca -t- Ch) 2, (5) 

which  is seen to have  its m i n i m u m  value if, for  all pairs  
a and  h, Ca + cn = O, i.e. 

Ca = - cn = c = a rb i t ra ry  c o n s t a n t .  (6) 

Thus ,  the basic radi i  (4) satisfy the cond i t ion  (1) and  
every least-square set o f  a lkal i  a n d  hal ide radii  can be 
derived f rom them by use of  a suitable addi t ive con- 
s tant ,  c: 

r a = ra + c and  r h = rh- -  c .  (7) 

Additional conditions 

The vo lume avai lable  for  an  ion  in the crystal  latt ice is 
l imi ted and  can be app rox ima ted  by a box (SysiS, 
1962, 1967); the  smaller  the ion  i tself  the g r e a t e r  its 
excess space and  the lower  its box-energy (kinet ic  
energy). The  cou lombic  ( p o t e n t i a l ) e n e r g y  is cons tan t  
because the neares t -ne ighbour  distances,  dan, are fixed. 
Thus ,  in order  to satisfy the  min imum-ene rgy  condi-  
t i on  the  box-energy mus t  also have  a m i n i m u m  value. 
This  means ,  roughly ,  hav ing  radi i  ra + c and  r h - c  as 
small  as possible,  which  can be expressed quant i ta t ive ly  
as fo l lows:  

S " = ~ a h [ ( r a + c ) Z + ( r ~ - c ) Z ] = m J n i m u m  . (8) 

By t ak ing  (4) in to  account  (8) can  be reduced to 

t !  2 S = ~2ah(ra -1- r~) + 2nanhC 2, (9) 

which  will have  a m i n i m u m  value when  

c = 0 .  (10) 

I f  the  expressions (4) are inser ted in to  the square  
sum of  radi i  differences, Z a h ( r a - r n  + 2 c )  2, this is also 
seen to have a m i n i m u m  value because of  the  condi-  
t ion  (10). Thus,  wi th in  the  alkal i  hal ide  fami ly  and  
wi th in  the cond i t ion  (1) the  an ion  radius  is as near ly  
equal  as possible to the  ca t ion  radius.  

F r o m  the exper imenta l  po in t  o f  view, the  best  radi i  
(7) would  be as close as possible to the  exper imenta l  
values (Table  2). This  r equ i rement  can  be expressed 
quant i ta t ive ly  as follows 

S ' "  = ~ah[(ra -~ C -- ra exp) 2 

+ (rn-- c--  rn exp) z] = m i n i m u m ,  (11) 

where the s u m m a t i o n  includes all the pairs  o f  experi-  
men ta l  a lkal i  and  hal ide radii ,  ra exp and  rh exp, nab in  
number .  The  possible tu rn ing  poin ts  o f  the  sum S ' " =  
S ' " ( c )  are defined by the  equa t i on  d S " ' / d c = O ,  which  
has the single roo t  

Cexp = - - (1 /2nah)Zah(ra - - ra  exp--rh-l-rh exp). (12) 

The  second derivat ive has the posi t ive value  
d2S ' " /dc  2 = 4, i.e. S ' "  = S " ' t c  expj is a m i n i m u m  point .  

Numerical 

The expressions (4) give a single set o f  crystal  radi i  
once the neares t -ne ighbour  distances,  dan, of  the  whole  

Table  2. Various sets  o f  a lkal i  and  halide radii  and  mean  deviat ions o f  their s u m s  f r o m  the e x p e r i m e n t a l  
neares t -neighbour  dis tance and  exper imen ta l  radii  and  their accuracy  l imi t s  

Li Na 
Wasastjerna (1923) - 1.01 
Goldschmidt (1926) 0.78 0.98 
Pauling (1927)* 0.60 0.95 
Zachariasen (1931)* 0.68 0.98 
Fumi & Tosi (1964)* Basic H-M 0.914 1-254 

Mean H-M 0.94 1.24 
Tosi & Fumi (1964)* Basic B-M 0.816 1.170 

Mean B-M 0.90 1.21 
Maslen (1967) Minimum overlap 0.70 0.98 

Minimum density 0.85 1.12 
Slater (1964) Atomic radii 1.45 1.80 
Present work Basic set 1.038 1.295 
Inkinen & J~irvinen (1968) 0-91 
Jfirvinen & Inkinen (1967) 
Krug, Witte & W61fel (1955) 0.92 
Kurki-Suonio & Fontell (1964) 1.15 
Meisalo & Inkinen (1967) 
Merisalo & Inkinen (1966) 0.78 
Schoknecht (1957) 1-18 
Witte & WSlfel (1955) 1.17 
Gourary & Adrian (1960):~ 0"94 1-17 
Present work Cexp=-0'114 0"924 1"181 

K Rb Cs F CI Br ' I A r.m.s. I% I 
1-30 1"50 1"75 1.33 1"72 1"92 2"19  -0"038 0-063 1"72 
1.33 1"49 1"65 1"33 1"81 1"96 2-20 - 0.020 0.052 1.16 
1.33 1"48 1"69 1"36 1"81 1"95 2.16 --0.057 0"097 2-34 
1-33 1"48 1"67 1.33 1"81 1.96 2-19 -0.031 0.051 1-09 
1"539 1"667 1"804 1"199 1"608 1"736 1.924 -0"012 0"074 2"11 
1"54 1.68 1.83 1"16 1.62 1 - 7 6  1 - 9 7  0.003 0"042 1-19 
1.463 1.587 1.720 1"179 1-585 1"716 1"907 -0-117 0.138 3-94 
1.51 1"65 1 " 8 0  1 " 1 9  1 " 6 5  1 " 8 0  2.01 0 " 0 0 6  0-041 1-17 
1.34 - - 1"35 1.81 1.98 - -0"011 0-037 1-19 
1"45 - - 1-26 1"67 1.81 - -0"011 0"060 2"13 
2.20 2.35 2 " 6 0  0 " 5 0  1.00 1.15 1 " 4 0  0"002 0.073 2"06 
1.617 1"759 2.017 1.019 1"534 1"695 1-934 0"000 0.02I 0-56 

1"66 + 0.08 
1 "71 1"58 +__ 0"05 

1"09 +_ 0"lt 
1"67 + 0.06 

1"57 1.73 _ 0"07 
1"23 + 0.04 

1"64 +0"1I" 
1"65 + 0"1]" 

1"49 1"63 1 " 8 6  1 " 1 6  1 " 6 4  1.80 2"05 - 0"028 0"66 
1-503 1"645 1.903 1"133 1.648 1"809 2.048 +0.014 0"021  0"56 

* For NaCl-type crystals only. 
t According to Schoknecht. 

Nor for LiF, based on the values of Witte et al. 
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crystal family are known. In fact, the iteration process 
(2)-+(3) would yield a set of radii although some dan 
values were unknown. Starting values dan (Hietala, 
1963; REP. Nat. Bur. Stand. Circ. 1953-57; Pautamo, 
1963) and the resulting basic (theoretical) radii, ra and 
rh, together with the deviations Aah = ra + rn-- dan and 
Aan/dan (per cent) are presented in Table 1. 

In order to make comparisons easier, all the theoret- 
ical sets and experimental pairs of radii mentioned in 
the introduction, as well as the basic (theoretical) 
least-square values (4) and corresponding semi-experi- 
mental radii defined by the equations (4), (7) and (12) 
are collected in Table 2. On the basis of the 16 experi- 
mental radii (8 pairs) given in Table 2 and by taking 
into account the root-mean-square value of their ac- 
curacy 0.055 A, the correction (12) to the basic radii 
(4) has the value Cex0=(-0-114+ 0"014)~. The main 
reason for this radii shift, i.e. charge shift also, is the 
ionic character of the alkali halide crystals. 

As seen in Table 1, the least-square radii reproduce 
most interionic distances very well. The greatest devia- 
tion, (ra+rn-dan)/dah=2"14%, found in LIF is 
probably caused by the strong ionic attraction. If the 
r.m.s, deviation of the radii sum from the experimental 
nearest-neighbour distance is chosen as a criterion for 
the additivity of crystal radii, the least-square sets are 
clearly the best (Table 2). 

Another possible basis for comparison is the agree- 
ment of a set of radii with the experimental values. 
These root-mean-square deviations, D, and the corre- 
sponding corrections, Cexp, (7), (12), which would 
minimize D, are shown in Table 3. According to the 
D values the mean Born-Mayer  set of Tosi & Fumi is 
the 'best' (D=0.056 A), the semi-experimental least- 
square radii are the second best (0.058 A) and the 
Gourary-Adrian values the third best (0.061 A). The 
basic (theoretical) least-square set comes eight - be- 
fore the classical values of Wasastjerna, Goldschmidt, 
Pauling and Zachariasen, and before the atomic radii 
of Slater. 

Table 3. The root-mean-square deviation, D, of  various 
sets of  radii from the experimental radii, and the additive 
correction, Cexp (ra-b Cexp, rn-- Cexp), which would 

minimize D 
D Cexp 

Wasastjerna (1923) 0" 160 0.145 
Goldschmidt (1926) 0.180 0-169 
Pauling (1927) 0.219 0.212 
Zachariasen (1931) 0.195 0.189 
Fumi & Tosi (1964) Basic H-M 0"065 -0.025 

Mean H-M 0.063 - 0.028 
Tosi & Fumi (1964) Basic B-M 0.070 0.008 

Mean B-M 0.056 0"005 
Maslen (1967) Minimum overlap 0.192 0.185 

Minimum density 0.073 0"050 

Slater (1964) Atomic radii 0.628 -0.626 
Present work Basic set 0-128 -0.114 

'exp' set 0.058 0.000 
Gourary & Adrian (1960) 'exp' 0"061 0"001 

Summary 

Application of the well-known method of least squares 
to the experimental nearest-neighbour distances, dan, 
has yielded a basic set of crystal radii, ra and rh, and an 
unlimited number of other sets which can be derived 
from the basic values with an arbitrary constant c as 
follows" r'~=ra+c, rh=r~,-c. The sum of those radii 
ra + rh, reproduces most interionic distances, dan, very 
well; the overall root-mean-square deviation is 0-021 A. 
Thus, additivity of the least-square radii is good - in 
fact best in comparison with other sets of radii. 

A theoretical value for the constant c has been 
deduced from the minimum-energy condition. Ac- 
cording to the result c = 0  the basic and theoretical 
least-square radii are equal. They agree with the 'best' 
theoretical sets (Fumi & Tosi, 1964; Tosi & Fumi, 
1964) and also satisfactorily with the experimental 
radii - better than the classical values of Wasastjerna, 
Goldschmidt, Pauling and Zachariasen. 

By fitting the least-square radii, ra+c and rn -c ,  as 
closely as possible to the experimental radii the con- 
stant c takes the value Cexv=(-0"114+0"014)A.  The 
cation radii are decreased and anion radii increased in 
comparison with the basic values (c=0)  because of 
the ionic character of alkali halides. This semi-experi- 
mental least-square set is based on sixteen experimental 
radii and agrees with them well, the root-mean-square 
deviation (0.058.~) being only a little greater than 
the r.m.s, accuracy of the experimental radii (0.055 A). 

The author's deep gratitude is due to Professors O. 
Inkinen and K. Kurki-Suonio as well as Dr V. Meisalo 
for fruitful discussions, and to the National Research 
Council for Sciences for financial support. The Finnish 
Government Grant for Young Scientists has also been 
of great value. 
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Crystal and Molecular Structure of a # , ' G t # ' - T e t r a m e t h y l -  [;- ketoglutarie Add 
(Trielinie Modifieation). A Model  of Polydimethylketene with Ketonic Enehainment 

BY GUSTAVO AVITABtLE AND PAOLO Ga2,rIS 

Laboratorio di Chimica Generale e Inorganica della Universitd di Napoli, Istituto 
Chimico, Via Mezzocannone 4, 80134 Napoli, Italy 
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(Received 16 December 1968 and in revised form 17 February 1969) 

The crystal and molecular structure of the title compound has been determined. The space group is 
PT, with unit-cell parameters: a=7.07 + 0.01, b= 6.13 + 0.01, ~= 13.13 + 0.02/~; e= 81023 '+  30', 
/~=96°42'+ 30', y= 118°23'+ 30'. Three-dimensional X-ray diffraction data were collected by photo- 
graphic methods. Signs of structure factors were determined by the direct methods of Sayre, Cochran 
and Zachariasen (Acta Cryst. (1952), 65, 68). Refinement was carried out by least-squares methods. The 
values of the rotation angles around the C-C bonds adjacent to the central carbonylic group are 66 o 
and - 155 ° (G+, T type). Some valence angles on carbon atoms are larger than the expected normal 
values because of strong intramolecular interactions. The molecular conformation is similar to that 
found for the chain of ketonic polydimethylketene. 

I n t r o d u c t i o n  

This paper describes the structural analysis of ~,c~,ct',ct'- 
tetramethyl-fl-ketoglutaric acid (TMKGA), 

[ H O -  CO - C - CO - C - C O -  - O H  
l I 

CH3 CH3 

The part of the molecule in brackets is a fragment of 
the chain of polydimethylketene, 

l H31 CH3 CH3 CH3 
I I I 

- C O  - C - C O  - C - C O -  - C  . . . .  

I I I 
CH3 L CH3 CH3 CH3 

a polymer whose crystal structure has been recently 
studied in our laboratory (Bassi, Ganis & Temussi, 
1967). 

The molecular structure of polydimethylketene is 
characterized by very short intramolecular distances, 
e.g. CH3---CH3 distances of the order of 3 A and 
O-- -O distances of the order of 2.8 A, which are cer- 
tainly surprising, even considering the limited accuracy 
inherent in fibre spectra crystal structure analyses. 

Our interest in the X-ray study of TMKGA origi- 
nated in part from the possibility of finding similar 
intramolecular distances in a model compound. From 
a more general point of view it was our purpose to gain 
new data on some conformational parameters (bond 
lengths, valence angles, torsional angles) in overcrow- 
ded open-chain aliphatic molecules, since very few 
values are available in the literature. In this connexion 
it is worth mentioning that the choice of such confor- 
mational parameters in order to build preliminary 
molecular models for the structural analysis, a n d  for 
the calculation of the internal conformational energy 
of polydimethylketene (Ganis & Temussi, 1966) has 
been particularly difficult owing to the lack of reliable 
values for valence angles of the type present in T M K G A  


